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The Kuramoto model for an ensemble of coupled oscillators provides a paradigmatic example of nonequilibrium
transitions between an incoherent and a synchronized state. Here we analyze populations of almost identical
oscillators in arbitrary interaction networks. Our aim is to extract topological features of the connectivity pattern
from purely dynamical measures based on the fact that in a heterogeneous network the global dynamics is not
only affected by the distribution of the natural frequencies but also by the location of the different values. In
order to perform a quantitative study we focused on a very simple frequency distribution considering that all
the frequencies are equal but one, that of the pacemaker node. We then analyze the dynamical behavior of the
system at the transition point and slightly above it as well as very far from the critical point, when it is in a
highly incoherent state. The gathered topological information ranges from local features, such as the single-node
connectivity, to the hierarchical structure of functional clusters and even to the entire adjacency matrix.
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I. INTRODUCTION

Currently, it is widely acknowledged that complex patterns
of interaction are as ubiquitous in nature as in society
[1]. Nonetheless, further research is required to completely
understand how the topology affects the system dynamics
[2,3], particularly how global dynamical properties are related
to the units dynamics and the interactions between them. A
unique answer cannot be provided since complex networks
respond differently depending on the dynamical processes that
take place within them [4].

One of the most interesting of these macroscopically
defined dynamical processes is synchronization, an emerging
phenomenon in which populations of interacting units display
a common periodic behavior [5,6]. Indeed, understanding
the role of connectivity in synchronization has been the
subject of intense research in recent years [7]. On the one
hand, much work has focused on the generic properties
of dynamical systems, mainly looking for necessary and
sufficient conditions that would grant that a population of units
under a set of simple dynamical rules is able to synchronize
[8]. On the other hand, much progress has been made by
studying precise models of phase oscillators, one of the most
paradigmatic being the model proposed by Kuramoto [9,10],
where the interaction between the units is proportional to the
sine of the phase difference.

In the present work, we will continue along this line and
analyze a population of Kuramoto oscillators with a precise
distribution of frequencies. The original work by Kuramoto
and many subsequent studies considered that the oscillators,
each coupled equally to all the others, had natural frequencies
taken from a given distribution. The nonzero width of those
distributions made the units follow different trajectories,
whereas the interaction term made their phases approach. In
fact, depending on the width of the frequency distribution,
there is a critical value of the interaction strength above which
the units tend to entrain their phases and hence leave the
incoherent regime. If the natural frequencies of the oscillators
are identical, a unique outcome is possible as the only attractor
of the dynamics is a completely synchronized state in which
all the oscillators end up in a common phase. And this
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occurs for any initial conditions and for any (connected)
topology [11].

In systems with regular patterns of connectivity (including
all to all) the only complexity comes from the frequency
distribution, whereas in more realistic (nonhomogeneous)
patterns, not only the frequency values matter but also the
precise location as well [3,12].

Here we will focus on a particular frequency distribution,
one that s just one step away from the homogeneous case. Such
adistribution has identical frequencies for all oscillators except
one. This singular oscillator, with a higher frequency than the
rest, has received the name pacemaker, and its effect in popu-
lations of Kuramoto oscillators has been analyzed [13,14]. In
Ref. [13], Kori and Mikhailov consider a special case where
the pacemaker affects its neighbors but is not affected by
them; under these conditions they find numerically that the
range of frequencies of the pacemaker for which the system
can attain global synchronization depends on the “depth” of
the network, where the depth is defined as the maximum
distance from the pacemaker to peripheral nodes. Radicchi and
Meyer-Ortmanns [ 14] consider regular structures for which the
conditions to synchronize can be analytically computed.

In this paper we use several properties of the heterogeneity
induced by the existence of the pacemaker to find useful
relations between topology and dynamics. On one hand, by
knowing the topology one should be able to infer the dynamical
properties of the network. On the other hand, by measuring the
dynamics some structural properties can be inferred, and this
will be our purpose.

First, we use a similar procedure to the one used in
Refs. [13,14], showing that there is a critical value for the
frequency of the pacemaker above which the (frequency)
synchronized state cannot exist. This is related to the existence
of a synchronized solution (also exploited in Ref. [15]) that
applies to any subset of oscillators. We find, however, that
from a practical point of view the most restrictive condition
is usually for the equation of the pacemaker that involves its
connectivity, and hence there is a clear relationship between
the critical frequency and the pacemaker connectivity that can
be used as an experimental measure of the degree.
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In order to get more details on the network structure we
analyze the system above the critical value where correlations
between dynamical evolution of the nodes appear. Such
correlations enable us to reveal the hierarchical organization
and to recover the network connectivity.

The structure of the paper is as follows. First, in Sec. II,
we characterize the coherent state and the transition to the
incoherent one by means of a proper definition of the order
parameter. Then, in Sec. III, we qualitatively analyze the
behavior of the system when it is not in the frequency-locked
state. Section IV is devoted to studying the relation between
local connectivity and the ability of the system to reach a
synchronized (frequency-locked) state. In Sec. V we focus on
the system slightly above the transition toward the incoherent
state. We show that it is possible to perform some hierarchical
analysis concerning the connectivity network. Finally, in
Sec. VI we study the system far above the critical point, in
a regime characterized by short range correlations, where it
becomes easy to identify the nodes directly connected to the
pacemaker. Thus the reconstruction of the whole connectivity
pattern is accurate and fast.

II. SYNCHRONIZATION AND PHASE TRANSITION

In the original Kuramoto model [9,10], the phases of the
oscillators evolve according to the following equation:

N
¢ =wi+o ZSin(‘Pj — ¢i)s (D

J=1

where N is the total number of units of the system, w; is the
natural frequency of unit 7, taken from a distribution, and o
stands for the coupling strength. This case corresponds to a
fully connected topology; i.e., each unit interacts with all the
other ones. The ability of the system to reach a coherent state,
for a given coupling strength, depends only on the width of
the distribution of natural frequencies.

Here we want to consider arbitrary connectivity patterns.
In this situation, the behavior of the system can no longer be
understood in terms of the ratio between the distribution width
and the coupling strength only. Where the natural frequencies
values are located is also relevant since on a generic interaction
network nodes are no longer equivalent.

From now on we are using the two-level hierarchical
network of nine nodes represented in Fig. 1 as a benchmark,
and, when not otherwise stated, all the figures refer to that con-
nection pattern. This network has been presented in Ref. [16] as
a very simple example of the class of deterministic scale-free
hierarchical networks proposed by Ravasz and Barabasi in
Ref. [17]. We choose this small regular connectivity pattern as
a simple paradigmatic example showing general properties of
the studied systems since it makes it easy to recognize the role
of each node.

Let us rewrite the equation for the evolution of the phases
including a symmetric connectivity matrix a;; that takes a
value of 1 (0) if nodes i and j are connected (disconnected):

N
¢i =w; + Zaij Sin((pj — §0i), (2)
j=1
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FIG. 1. (Color online) Hierarchic network that will be used as a
benchmark. In this particular setting the pacemaker is located on a
peripheral node (marked as P) of degree k, = 3. The other nodes are
grouped into sets using different colors. The elements of each set are
topologically equivalent if we look at the network from the point of
view of the pacemaker. Consequently, their dynamical evolution is
identical.

where we have rescaled time by setting o = 1. Now we
consider all the oscillators to have the same natural frequency
(0, without loss of generality), except one of them, called
the pacemaker, whose frequency is w # 0. It is precisely this
extremely simple choice of frequencies that enables us to study
the roles played by individual oscillators.

If a stationary state exists, then all the effective frequencies
will take constant values, and the following conditions have to
be satisfied:

N
Y aysin(p; —g) =@ Vi#p, 3)
J=l1
N
o+ Y aysin(p; —g,) =2, (4)
j=1

where {€2;} are the effective frequencies of the oscillators.
Notice that summing up Eqgs. (3) and (4) the coupling terms
cancel because of the symmetry of the interaction, which
results in

Looking at Egs. (3) and (4), it is easy to recognize that
there is an interplay between two effects. On the one hand, the
width of the frequencies distribution (in our present case this
role is played by w itself) tends to keep the evolution of the
oscillators apart since each one follows its natural frequency.
On the other hand, the interaction term makes them approach
their phases as well as their effective frequencies. Then we
conclude that if the pacemaker’s natural frequency is small
enough, the interaction term dominates, and after a transient
time, all effective frequencies €2; will be identical:

Qi =w/N Vi, (6)

including the pacemaker. In this case we can say that the
system is in a frequency-locked state since all oscillators have
the same frequency, although the phases are not equal because
there is a coupling term (that of the pacemaker) that cannot
vanish.

When increasing the pacemaker frequency w, some oscil-
lators cannot keep the phase difference, and the frequency-
locked state is broken. The left-hand side of Eq. (3) is indeed
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FIG. 2. (Color online) Order parameter (7) as a function of the
natural frequency of the pacemaker. Different curves correspond to
different settings: circles refer to the pacemaker located on node 1
in Fig. 1 (k, = 8), and triangles refer to the pacemaker on node 2
(k, = 3). The average value (r,), for v > w,, was calculated on a
time window A¢ = 100.

bounded because of the sine terms, whereas the right side
increases as the pacemaker frequency is increased. A similar
conclusion can be deduced from Eq. (4). Consequently, there
will be a transition from a synchronized to an incoherent state.
Thus we can define the critical value o, as the maximum value
of the natural frequency of the pacemaker for which the system
can attain global synchronization.

Such a transition for a population of phase oscillators
is typically characterized by an order parameter R, defined
through the equation Re'” =", e'¢/, where W is a global
phase (not constant) [18].

In the present work, following [12,19], we adopt another
order parameter that is a normalized measure of the effective
frequency dispersion (standard deviation):

)

) z\/z,”:l [g1/{) = 1T
w N _1 ’

where (w) is the average effective frequency of the oscilla-
tors population, a constant quantity always equal to w/N.
According to its definition, r, takes values in the interval
[0,1] (see Fig. 2). It should be noticed that, since above
the critical frequency the system is not able to reach a
steady state any longer, calculation of the order parameter
(7) requires performing averages over an appropriate time
window. Anyway, the value of (w) does not change because
what we found in Eq. (5) is a general result, even for
instantaneous values of the effective frequencies.

To find the precise value of the critical frequency we apply
the Newton-Raphson method (NR) and check, as a function
of the frequency w, whether the synchronized solution of
Egs. (3) and (4) exists. To simulate the dynamics of the system
in the incoherent state (w > w),) we take as initial phases
{9:(0)} the stationary values of the differences provided by
the NR solution for @ = wf,. The system of equations (2) is
numerically integrated with Euler’s method (first order), unless
otherwise stated, at fixed time step 6t = 1072,

PHYSICAL REVIEW E 85, 036112 (2012)

Frequency

Lo 2N w s
L o =N w s

Frequency
- O = N W O

g jmfee T ‘

0 1000 20 40 60 80 100
Time Time

FIG. 3. (Color online) Effective frequencies above the critical
point as functions of time. That of the pacemaker (red top curve), in
this particular setting located on node 3 in Fig. 1, is on average much
larger than the others (lower curves). The plots show a pacemaker
natural frequency value that is (a) 1.01, (b) 1.05, (c) 1.2, and (d) 2
times its critical value. Time starts after a transient lag 7, = 10.

III. INCOHERENT STATE

Above the critical frequency of, the system is no longer in
a stationary state, and hence the effective frequencies are no
longer constant.

Numerical simulations show that, after a transient time,
the system enters into a “periodic” state (see Fig. 3). The
features of this periodic state are not affected by the initial
conditions, and they only depend on the pacemaker frequency
and location. It is precisely this fact that enables us to infer
topological properties from dynamical measurements.

Figure 4 summarizes what we have learned up to now,
shedding light on some interesting details. The time average
of the effective frequency of the pacemaker (¢,); and that
of one of its neighbor (¢;); are plotted as functions of the
pacemaker natural frequency. These quantities are calculated
from numerical simulations, taking into account appropriate
time windows.

Starting from small values of w, the picture shows how all
the effective frequencies increase together linearly, following
the reference line 2; = w/N defined by Eq. (6). Then, when
o reaches the critical value of,, they do separate. Initially, the
average effective frequency of the pacemaker goes through a
more than linear increasing, while the others start decreasing,
keeping their (average) values very close to each other. For
even larger values, when w > a);', Fig. 4 shows how the
average effective frequency (¢,), tends to @, asymptotically
increasing along a new reference line with a slope equal to 1.
At the same time, (¢;), for i # p goes to zero, as required by
the conservation law (5).

IV. CRITICAL FREQUENCY AND LOCAL TOPOLOGY

In this section we explore the relation between the topology
of the network and the value of the critical natural frequency
of the pacemaker depending on the node where it is located.
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FIG. 4. (Color online) Average effective frequencies as a function
of the natural frequency of the pacemaker w. The behavior of two
oscillators is shown: node 1 (black circles) and node 2 (red triangles).
On the right side the pacemaker is node 1, and on the left one
it is node 2. Initially. the frequencies are synchronized and they
increase linearly with a slope of 1/N (dashed line), as expected from
Eq. (6). Then, when w reaches the critical value, which is different
for different locations of the pacemaker, they grow apart. Far above
the critical values, the average frequency of the pacemakers approach
asymptotically a new reference line with a slope of 1 (solid line). The
time averages were performed on a time window Az = 100.

Let us begin by writing the equation for the pacemaker in the
synchronized state. As a consequence of Eq. (6), we have

N
w—l—Zajpsin((pj—(pp):w/N. (8

J=1

This equation links the natural frequency of the pacemaker to
the constant values of the phase differences between it and
its neighbors, when all the units are oscillating with the same
effective frequency. Since the number of non-null terms a;,
in the previous expression is given by the number of nodes
connected to the pacemaker and sin(p; — ¢;) € [—1,1], the
degree (or connectivity) of the pacemaker is a bound for the
absolute value of the sum in Eq. (8).
Thus there is an upper bound for the critical frequency:

0); < kp%’ 9
where k, is the degree of the pacemaker. Indeed, any value
larger than the right-hand term in inequality (9) is surely
unable to satisfy Eq. (8), and hence the system is unable to
be frequency synchronized.

Notice that we have obtained this bound by taking into
account a single equation, that of the pacemaker. We can write
for any oscillator the analog of Eq. (8) as follows:

N
> ajisin(p; — i) =w/N, Vi p. (10)
j=1

It is easy to verify that no stricter condition can arise from any

of these equations [20]. However, stronger bounds could exist

due to the combination of Eq. (8) and some of Egs. (10).
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Let us consider a set of (n + 1) connected nodes, among
which the pacemaker is included [21]. Labeling them by
an increasing index i = 1,2, ...,n 4+ 1 = p and summing up
their equations, we obtain

n+l N

(n+ DT =0+ ) Y asing; —g). (1)

i=1 j=1

If two nodes in the considered group are neighbors, their
respective interaction terms cancel each other. So the number
of remaining terms of the sums in Eq. (11) is given by

n+1 n+1

Kout:Zki_ Zaijv (12)
i—1

i.j=1

where k; is the degree of the ith node and K, is equal to the
number of links connecting the nodes of the considered set to
external ones.

Consequently, Eq. (11) can be rewritten as

Kou

(n + 1)% —w+ l; sin(¢), (13)

where ¢; = ¢; — ¢;, is the phase difference between two
connected nodes i and j which are, respectively, inside and
outside the group.

We are now able to write the expression of the upper bound
for the critical frequency o/, in a generalized form:

« N Ko
out; ., 1~
N — (” + 1) Nout

where Noy stands for the number of nodes not belonging to the
considered set. Eq. (14) reduces to the previous upper bound
if one chooses n = 0.

In this way we can write a very large number of conditions,
that is, the number of the connected sets of nodes that include
the pacemaker and whose size ranges from 1 to N — 1.
Among these, the strongest one is that for which the ratio
Kout/ Nout takes its minimum value. This is a combinatorial
problem, which is in principle very simple but is hard from a
computational point of view since the number of conditions
grows at least exponentially with the network size.

Minimizing the ratio Kou/Now, We find the strictest
condition on w? that can be expressed in the form of a single
equation. No other equation obtained as a linear combination
of Egs. (3) and (4) may provide a stronger bound. This
condition is analogous to the necessary condition for global
synchronization concerning the surface (here Koy) of any
subset of nodes derived in Ref. [15] for randomly distributed
natural frequencies and generic oscillators. However, these
conditions are not sufficient. In our case, it is not certain that
the K,y remaining sine terms of Eq. (13) are allowed to take
their minimal values simultaneously. This kind of problem
directly involves the sine function arguments that may not be
independent since they are differences between pairs of phases
and we are dealing with a system of N coupled equations. It
may happen that two or more phases are tied to each other by
a certain set of equations of the kind f;(¢;,{¢;;}) = 0 (where
nodes {i;} are neighbors of node 7). Consequently, we cannot
minimize the sum of sine terms on a hypercube [0; 277 1Kot but

C
a)p<

) (14)
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we have to restrict ourselves to a hypersurface of dimension
Kout — m, where m is the number of constraints. A system may
experience this kind of difficulty (which we can regard as a
kind of angle frustration) only if cycles are present and there is
some anisotropy and only when 1 < k, < N — 1. Therefore,
for a good number of regular connectivity patterns, such as
those analyzed in Ref. [14], there is not such a problem, and
it is possible to analytically calculate the entire set of values
P}, p=1,....N

As a simple, analytically solvable network let us consider a
Cayley tree with coordination number z, made up of § shells.
For each node it is indeed possible to single out a connected
“group” such that K,y = 1, taking in all the nodes on the
branch starting from the considered pacemaker. In this way
we are minimizing the ratio Kqu/Noye SO that we can consider
the strictest equation among Eqs. (14). Moreover, since there
is no cycle, there are no problems of angle frustration either.
Therefore, the obtained expressions give the correct values, not
just bounds. In this way we obtain for the critical frequency

1
N — Z_O(Z

where s is the shell of the pacemaker.

Even though in real complex networks it is not so easy
to calculate {w?}, we have empirically verified that only in a
few cases is the critical frequency much smaller than its first
upper bound (9). This can be clearly observed in Fig. 5, where
we plotted the ratios between the real critical values and the

o =

c

©)

1 10 100

FIG. 5. (Color online) Critical frequency of a pacemaker as a
function of its degree for a set of networks. We have divided the
critical frequency by the degree and by N/(N — 1) such that the
bound given by Eq. (9) is 1. We have shifted the data for the different
networks, and the horizontal lines are the reference (equal to 1) for
each case. From bottom to top the networks are (1) the Zachary club
social network [22] used in community detection applications, (2) a
hierarchical network of 125 nodes and 3 levels [17], (3) a network of
4 communities of 32 nodes each used as benchmark in community
detection algorithms [22] where all the nodes have the same degree,
(4) a network of jazz bands [23], (5-7) three networks of three levels
of community structure used to relate topological and temporal scales
in synchronization [24], and (8) the Caenorhabditis elegans neural
network [25].
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corresponding upper bound for every choice of the pacemaker
in several networks.

The accuracy of this estimation enables us to use it in the
opposite direction, i.e., to get an estimation of the pacemaker
degree from an experimental measure of the critical frequency.
We can invert Eq. (9), obtaining

N —1
kp 2 w, T (15)
but since the right term is not an integer, the smallest allowed
value for k, is

* C N — 1
k= [wp . +1}, (16)
where [x] stands for the integer part of x. We can conclude
that Eq. (16) gives the correct value of k, whenever

. N N
S (kp — 1)ﬁ,kpﬁ .

This fact implies that the estimator (16) for the degree of
the pacemaker is very reliable. Indeed, it only fails when the
critical frequency is really smaller than its bound (9).

V. SLIGHTLY ABOVE THE CRITICAL POINT

In this and in the next section we translate the rich dynam-
ical information that the system provides in the incoherent
state into useful topological information. Here we focus on
the behavior of the system slightly above the critical point,
while in Sec. VI we will analyze the system when the natural
frequency of the pacemaker is many time larger than its critical
value.

We are interested in estimating how similar two nodes are
from a global topological perspective. For this purpose we need
to define an appropriate correlation function, able to relate the
dynamical responses of pairs of oscillators.

Looking for the expression of a good correlation function,
we get no help from the average values (¢;); = fooo @;(t)dt.
Indeed, in this regime, all the oscillators, except the pacemaker,
have the same average effective frequency. On the contrary, it
can be useful to look at the difference between instantaneous
values. We measure the frequency of every oscillator at each
time, inside a suitable interval. In order to define a correlation,
that is, a quantity that has to be non-negative and symmetric
with respect to nodes indexes i and j, it is reasonable to start
from a power of the absolute value of the difference |gb[(" )(t) —

<p§" )(t)|, where (p) stands for the pacemaker that induces the
considered dynamical evolution. Therefore, we propose

(P) p)
Ly =1- \/|¢ 0 —¢"0]

Dividing by @ makes the argument of the root less than 1
because, even if the frequencies may take negative values (see
Fig. 3), the condition |¢;(#)| < w always holds.

The period of the effective frequency’s oscillation depends
on which node is the pacemaker. Then, in order to compute
averages in time that are really independent from the con-
sidered interval, we have to choose a time window many
times larger than the oscillation period. Furthermore, since
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FIG. 6. (Color online) The network of Fig. 1 and its correspond-
ing dendrogram. Correlations are calculated by averaging over a time
window Ar = 60, after a transient lag 7y = 10, for w = l.lw;.

@i — @pl > |@i — @j| for any i,j # p, we decide to exclude
these contributions, taking into account only terms of the kind
cf; where i # p and j # p.

Finally, in order to remove the dependence from the index p
we have to average all the possible pacemakers. Summarizing
in a compact expression, our correlation function can be
written as follows:

it B [
Cj=1——- .
N—szlp#,’jll—lo I [}

a7)

A. Hierarchical organization

Once we have obtained the correlation matrix we can
proceed to some hierarchical analysis. In the present work
we use the standard unweighted pair group method average
(UPGMA) [26] algorithm to compute such diagrams. What
we find out is a hierarchy of dynamical communities, whose
meaning is immediately understandable in the case of small
networks, such as our benchmark in Fig. 1 (see Fig. 6).
Obviously, this simple network does not need any analysis
to obtain its hierarchical organization, but this methodology
can be very useful when applied to functional hierarchical
network.

As a paradigmatic example, let us consider the corticocor-
tical network of a cat at the macroscopic level. We look at
each cortical area as a basic unit, modeling it as a Kuramoto
oscillator, finding similar results as in [27,28].

In Fig. 7 we show that, going down along our dendogram
starting from the root, it is possible to recognize two commu-
nities clearly separated. Then, the right branch splits into two
parts, and the left one undergoes two subsequent bifurcations,
so that it is possible to identify three groups of nodes on it. At
this level we have five communities. Four of them correspond
to well-known physiological subsystems: the frontolimbic
(FL), the somatosensory motor (SM), the auditory (A), and
the visual (V). The fifth one (HUBS) is composed, except for
a single area [29], by superhubs, sometimes considered as a
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FIG. 7. (Color online) Dendrogram of the cortical brain network
of a cat. Different colors correspond to different subsystems: the
frontolimbic (FL), the somatosensory motor (SM), the auditory (A),
and the visual (V). The rich club is labeled with HUBS, while the
branch indicated with the label hp is the area that belongs to the
hippocampus, and it is out of place. Correlations are calculated by
averaging over atime window At = 100, after a transientlag 7, = 10,
forw = 1.1w;,.

metacommunity (rich club) [27,28]. The most relevant aspect
of our hierarchical analysis is that there is no way to recognize
this metacommunity if the dendrogram is constructed by
means of static methods. It cannot be obtained throughout
correlation matrices generated from the adjacency matrix
using, for instance, Pearson’s coefficient [30] either. Nor can
these nodes emerge as a community when the modularity
function is maximized. Indeed, maximizing the modularity,
we obtain as an optimal partition the same four groups
corresponding to the four physiological sub-systems.

In general, complex networks can be organized, and thus
analyzed, at different hierarchical levels. For social networks
it is very important that a group is tight, so that the multiple
connections within the group give rise to the concept of
community. On the contrary, in biological networks the most
crucial concept is function rather than connectivity per se.
Therefore, methods that rely on the connections within groups
and maximize modularity will not be enough to identify
biological units based primarily on function [31,32]. In this
case, our method, which analyzes the dynamical correlation
between units, provides a better approach to inferring func-
tional relationships.

One of the known problems of the methods commonly used
for detecting community structures in complex networks is the
existence of the so-called resolution limit, found by Fortunato
and Barthelemy [33]. This issue is related to the impossibility
for the methods based on modularity optimization to go
beyond a certain resolution, which is related to the community
size and to the number of links between communities. The
paradigmatic example of the problem is a network formed
by “cliques” (small groups of totally connected nodes),
which are very sparsely connected. We have checked such
structures and found that, dynamically, the correlations are
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very strong within the cliques and not among nodes belonging
to different modules, showing that our method for detecting
the hierarchical organization is not affected by the resolution
limit problem.

B. Recovering network topology

Let us now take a step backward and recover something
we had previously discarded. In the sum of Eq. (17) we had
excluded terms in which one of the indexes was equal to

3 " o= 1 P
p since they were heterogeneous. So ¢ij = v Zp#i’j Cij
However, the set of elements cZ NS 1,...,N, also contains

information. We may ask ourselves which oscillators are most
strongly correlated with the pacemaker and if they share some
topological property. The simplest hypothesis is that the set
of k, largest CZ ; 1dentifies the neighbors of the pacemaker.
This is reasonable since, even if the pacemaker is very weakly
correlated to the rest of the oscillators, coefficients cf; ; are not
uniform, and the topological distance is the most immediate
quantity that we may suppose this variability is related to. In
Sec. IV we showed how to find out an estimator of the degree
of each node from the critical frequencies. Thus if we are able
to select the possible neighbors, we would be, in principle,
able to reconstruct the entire network.

The first problem we face in the attempt to validate this
hypothesis is that our list of likely neighbors gives us an
asymmetric and weighted adjacency matrix, whose elements
are

(A s *
a,;, =Cpj for i = 1,...,kp,

a,. =0 for i:k;—}-l,...,N,

where k7, is the estimator for the degree of the pacemaker given

by (16) and c’;ji > c’;j, whenever i < k% and ! > k.

Moreover a,,, # a,,, since, generally speaking, ¢, # ¢l .
Therefore we have to remove the weights and symmetrize this
matrix. Here we propose an algorithm to perform this task that
is at the same time simple and efficient. It consists of four
steps.

(1) Symmetrize the matrix in the usual way: a,, =
(ai/nn + a;lm)/z'

(2) Compute a list of temporary degree k, > k' as the
number of non-null elements a;,, .

(3) Order all the non-zero values a;,, in a list, from the
smaller to the larger.

(4) Check which ones among the corresponding likely links
have to be removed, starting from the weakest one.

We proceed as follows: given a pair of nodes m and n whose
link is the weakest one, if and only if k;, > k¥ and k|, > k', we

m
remove that link, setting a,, = a;,, = 0. In this case both k],
and k/, are reduced by one unit. Otherwise, we go to the next
link, going on along the entire list until reaching the strongest
link.

This method is rooted in the hypothesis, empirically very
well verified, that the matrix a;,, contains all the links of the
real network plus a number of false positive ones, i.e., that
there is no false negative link. Thus we need just remove,
never add, edges.

Moreover it works properly only if our estimators {k}} of
the actual degrees {k,} are correct; otherwise, we may make
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additional errors. Fortunately, it is a very infrequent problem.
The sole hypothesis we make is that the probability for a link
to be a “false” one is a monotonously decreasing function of
the correlation between the nodes it joins.

Finally, the method does not ensure that in the final
estimated network k/, = k Vn because it is possible that even
if k; > k', the nth oscillator has no possible neighbor whose
temporary degree is larger than its estimated one. Sometimes
this fact may cause new errors; others times it acts as a
compensation of the underestimation of the real degrees.

In order to quantify how good a reconstruction is, we
introduce the following error definition:

F F
err(%) = y x 100,

where Fp and Fn are, respectively, the number of false
positive (spurious) and false negative (missing) links in the
reconstructed network and L is the number of edges in
the original connectivity pattern. Globally speaking, we can
state that our method allows for a reconstruction of an arbitrary
connectivity pattern with good precision. Taking into account
the networks in Table I, on average, we have err(%) = 6.5.
Among these networks there are artificial as well as real
connectivity patterns. They were selected to be representative
of several classes of networks, including hierarchical as well
as nonhierarchical, with and without community structure,
regular and irregular. For this reason, the average error
calculated on this set of benchmarks can be considered to be a
good estimator of the accuracy of the proposed reconstruction
method when applied on a given unknown connectivity pattern.

TABLE 1. Results of the reconstruction on several networks. The
columns give the size of the system N, the total number of links in
the original network L, the total error in the estimation of the degrees
Ko = Z,N:1 |k; — k7|, the total number of links in the reconstructed
network before the removal of exceeding links L', the number of false
positive F,, and false negative F), links in this network, the same for the
final reduced network (L,,F,/F,), and the final total error [err(%)].
From the first row, the networks are our usual benchmark [16], a
ring of 6 cliques of 3 nodes [33], a hierarchical network of 25 nodes
and 2 levels [17], the Zachary club social network [22], a ring of 16
cliques of 3 nodes [33], the cortical brain network of a cat [34], a
hierarchical network of 125 nodes and 3 levels [17], a network of 4
communities of 32 nodes each [22], and 2 networks of 3 levels of
community structure [24].

N L Ke L  F,JF, L. F,JF em(%)
9 15 0 15  0/0 15 0/0 0
18 24 0 24 0/0 24 0/0 0
25 6 0 8  16/0 66 0/0 0
34 78 7 99 27/6 75 7/10 218
48 64 0 64 00 64 0/0 0
53 391 0 445  53/0 392 5/4 2.3
125 394 33 475 810 383 1/12 3.3
128 1024 0 1060 57/21 1026 36/34 68
256 2311 0 3223 1040/128 2324 259/246 21.8
256 2301 0 2851 607/57 2312 116/105 9.6
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FIG. 8. (Color online) Effective frequencies as function of time
far above the critical point (w = 20a);). Plots refer to the same
network used for the previous pictures, in the case of two different
choices of the pacemaker: node 1 (k; = 8) above and node 2 (k, = 3)
below. On the left-hand side we plotted the frequency of all the nodes
in the network. On the right side the scale has been changed, and
the pacemakers are left out. Notice how above, where all the nodes
are neighbors of the pacemaker, we may observe a unique curve. On
the contrary, below there are two different kinds of oscillations. The
largest ones are those of the neighbors of the pacemaker; the others
belong to the oscillator not directly connected to it. Time starts after
a transient lag T, = 1. The integration time step used is 5t = 107,

VI. FAR FROM THE CRITICAL POINT

Far above the critical point the system behaves quite
differently. As clearly shown in Fig. 8 (left panels) all units are
characterized by effective frequencies that, after a transient
time, oscillate around precise values that are equal to their
own natural frequency. From this point of view, by increasing
the natural frequency of the pacemaker the coupling is less
and less important. But, in any case, there are still remnants
of the interactions since the amplitudes of the oscillations
decay very quickly with the distance from the pacemaker.
Indeed, the frequencies of the neighbors of the pacemaker
oscillate with an amplitude that is roughly Apeion 2 2, while
all the other oscillators are almost at rest compared with them.
These conditions allow us to recognize the neighbors of a
given pacemaker even if we do not know how many there are.
Therefore, we may define a simplified correlation function
that better suits this situation and that only connects each
pacemaker with its neighbors:

oF — max, [@; (t)] — min,[¢;(?)] _ A
PE max [¢p(1)] — ming (¢, (1)]  Ap°

(18)

The above expression is the ratio between two positive terms
(amplitudes), and it is equal to 1 for i = p.

On any connectivity pattern, the values ¢, pi are distributed
along a set of stairs whose highest step is easy to identify even
if we consider short time windows. The transient time, indeed,
is always very short in this regime. We do not need anything
else in order to completely reconstruct the entire connection
topology.

All we have to do is to compute the values cF for each

pacemaker. After finding out the maximum values max;, zfl
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Vp, we choose an appropriate threshold, say 0.5. A node j will
be a neighbor of the pacemaker p if ng/(maXi;ép cgi) > 0.5.
Now we are able to construct a connectivity matrix.

Let us notice that in this case there is no need for
symmetrization since the adjacency matrix constructed in this
way is already symmetric because this method is based on
a reliable general property that holds for any connectivity
pattern. The use of a threshold is therefore, in principle,
unnecessary since all the neighbors have the same amplitude
of the frequency oscillation, when the pacemaker natural
frequency is above a certain value. But since this value is not
known a priori and it may be very large if the distribution of the
degrees among the neighbors of the pacemaker is very wide,
it is useful from an empirical point of view. It is important to
stress that, even if we are still in a regime where some degree of
heterogeneity among the neighbors is conserved, there is no
chance to make any errors in the recovered topology. Indeed,
the amplitudes of the frequency oscillations of the pacemaker’s
neighbors is at least one order of magnitude larger than that
of any other oscillator (see Figs. 8 and 9). By means of this
method all the topologies considered in Table I are properly
reconstructed, without errors.

In addition, not all nodes need to be considered as
pacemakers. While the method discussed in Sec. V B requires
us to perform dynamical measures for every possible location
of the pacemaker, for the current description this is not
necessary. Indeed, we can look for the neighbors of a number
N’ < N of pacemakers in order to get all the connections in
the considered network. From an experimental point of view,
adopting the conceptual framework proposed in Ref. [35],
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FIG. 9. (Color online) Normalized correlations of the cortical
brain network of a cat for a pacemaker on node 1 (k, = 10). The
circles are the correlation values calculated through Eq. (17) for
w= 1.2a); (At =100, T; = 20). The triangles correspond to the
correlations given by expression (18) when @ = 20w/, calculated
on a time window Az =1 and waiting a transient time 7y = 0.1.
All the values have been divided by the maximum of each set
(excluding the autocorrelation). Notice that while in the first case
there is an almost continuous spectrum of values, in the second one
it is easy to identify a group of points [red triangles] above the line
at 0.5 clearly separated from the rest. Those are the ten neighbors of
node 1.
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FIG. 10. (Color online) Average number of reconstructed links
as a function of the number of nodes we considered as pacemakers
(number of trials). From the top to the bottom, the considered
networks are a pair of Barabasi-Albert networks, with parameter
k = 3 (left) and k = 10 (right); a pair of Erdos-Reyni graphs with
average degree equal to 15 (left) and 60 (right); and a pair of
random regular graphs with degree 5 (left) and 100 (right). The size
is N = 1000 for all plots. Different lines corresponds to different
selection algorithms. Blue dashed lines stand for the ordered sequence
on the basis of the critical frequency values; the red solid lines are for
the random walk; the green dotted lines are for random extractions.
Both the random walk and the random extractions are averaged over
1000 samples. The horizontal black line marks 90% of links: notice
how in any case we never need more than 70% of the nodes in order
to reconstruct 90% of the links, decreasing to 30%—40% in the case
of the ordered sequence for scale-free networks. Correlations are
computed under the same conditions as those in Fig. 9.

we may consider the choice of a certain pacemaker as the
application of a drift on a given unit in a system of identical
coupled oscillators. This means that it is possible to solve the
problem with less than N experiments.

The criterion for choosing the ordered sequence of nodes
on which we locate the pacemaker can vary. We may operate
a random extraction or we may start from a randomly
chosen node and then move to one of its neighbors along a
random walk. Another option, which is much more convenient,
especially in the case of scale-free networks, can be adopted
if the critical frequencies associated with each oscillator are
known. We can order the nodes according to decreasing
critical frequency, starting from the highest one. In this
way we proceed from larger to smaller (estimated) degrees,
taking an important advantage if the degree distribution is
not uniform and there are hubs. The hubs, indeed, provide
information about a large number of links by means of very
few experiments (Fig. 10).
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VII. CONCLUSIONS

Systems of nonidentical Kuramoto oscillators have been
recently shown to display a degree of synchronization that
depends strongly on the topology of the underlying complex
network. Here these dynamical properties, particularly by
setting different types of correlations between the dynamical
evolution of the oscillators, have been used to gather informa-
tion on the connectivity patterns. Remarkably, this is the case
for most experimental situations, where the a priori unknown
connectivity of a particular network is inferred from purely
dynamical measurements.

When the oscillators are identical (all of them having
the same natural frequency), any topological configuration
has a unique attractor, which is the complete synchronized
state, meaning that the oscillators end up in such a state
that all effective frequencies and phases are identical. This
state does not offer any information about the topology. We
perturb this setting by allowing one of the oscillators to have
a different natural frequency than the rest. This unit is called
the pacemaker of the network. Such a perturbation causes the
final state to no longer be phase synchronized. But if the natural
frequency of the pacemaker is not very different from the value
of the rest of the population, the system still will retain a certain
degree of synchronization since the whole system can evolve
with the same effective frequency. However, if the frequency
difference becomes larger, the system will be unable to find
any kind of synchronization. The threshold between the former
case and this latter case is a well-defined value, which is strictly
dependent on the location of the pacemaker in the network. In
this context, we can use the correlations between the effective
frequencies of the oscillators in such an incoherent state to
reproduce the network connectivity.

Moreover, we show that the dynamical correlations in
different situations, whether close to or far from the critical
point, provide complementary information on the network.

(1) Working around the critical point, we are able to estimate
the degree of each pacemaker merely by its critical frequency.

(2) Slightly above the transition point the hierarchical
structure of the whole network (related to functional modules)
can be obtained from the correlations between effective
frequencies. A further refinement enables us to recover the
whole connection network with a good degree of accuracy.

(3) Far above the critical point it is possible to recognize
which oscillators are directly connected to an individual
pacemaker from a very short measurement of the time
evolution of the effective frequencies. In this way we can
recover the connectivity pattern, and this method turns out to
be much more precise and more efficient than the previous one.

In summary, this paper deals with different approaches
relating dynamical properties of individual nodes to the
topology of the network. The topological properties inferred
from dynamics can be local (the existence of a link between
two nodes) as well as global (hierarchical organization of the
nodes in the functional network). In particular, for a scale-free
network and if the node degrees are known (or have been
estimated from the critical frequencies), considering 30% of
the possible pacemakers, always selecting the most connected
nodes, will be enough to reconstruct approximately 90% of
the links.
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Other papers have considered the reconstruction of the
network from dynamical information. Similar to our proposal
with specific targets, Tegner et al. [36] analyzed the dynamical
response of a gene-regulatory network by changing expression
levels of particular genes. On the other hand, di Bernardo
et al. [37] considered the global effect of different types of
perturbations to infer the network topology. This approach
has been followed recently also by Gorur Shandilya and
Timme [38], who assumed that there is some information about
the dynamical evolution of the isolated units and about the
coupling. Our method, based on the change of the frequency
of a single unit and how it enhances correlations among the
nodes, can be more effective in oscillatory systems. In any
case, for practical purposes the method chosen will depend
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on the specific details of the experimental setup, and even a
combination of different ones can be the most appropriate.
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